organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-(4-Methoxybenzylidene)methoxyformohydrazide

Zhen-Hua Shang,* Hui-Li Zhang and Yue Ding

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China Correspondence e-mail: zhenhuashang@yahoo.com.cn

Received 30 June 2007; accepted 30 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.144; data-to-parameter ratio = 13.0.

There are two molecules in the asymmetric unit of the title compound, $C_{10}H_{12}N_2O_3$, with almost identical conformations. The crystal structure is stabilized by intermolecular $N-H\cdots O$ hydrogen bonds.

Related literature

For related literature, see: Borg *et al.* (1999); Goswami *et al.* (1984); Omar *et al.* (1996); Shang (2006); Shang *et al.* (2007); Tully *et al.* (1991); Yang & Dai (1993).

Experimental

Crystal data

$C_{10}H_{12}N_2O_3$
$M_r = 208.22$
Triclinic, P1
a = 7.3738 (16) Å
b = 9.671 (2) Å
c = 14.689 (3) Å
$\alpha = 89.128 \ (4)^{\circ}$
$\beta = 85.961 \ (4)^{\circ}$

$\gamma = 87.693 \ (4)^{\circ}$
$V = 1044.0 (4) \text{ Å}^3$
Z = 4
Mo Ka radiation
$\mu = 0.10 \text{ mm}^{-1}$
T = 293 (2) K
$0.30 \times 0.20 \times 0.16 \text{ mm}$

Data collection

```
Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
T_{min} = 0.971, T_{max} = 0.984
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	
$wR(F^2) = 0.144$	
S = 1.00	
3674 reflections	
283 parameters	
7 restraints	

5411 measured reflections 3674 independent reflections 2083 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$

H atoms treated by a mixtu	re of
independent and constra	ined
refinement	
$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1

Hydrogen-bond geometry (Å, °).

N2-H2A···O5i0.889 (10)2.096 (13)2.940 (2)158 (2)N4-H4A···O20.889 (10)2.145 (14)2.986 (2)157 (2)	$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$N2 - H2A \cdots O5^{i}$ $N4 - H4A \cdots O2$	0.889 (10) 0.889 (10)	2.096 (13) 2.145 (14)	2.940 (2) 2.986 (2)	158 (2) 157 (2)

Symmetry code: (i) x, y + 1, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank the Outstanding Young Scholar Funds of Hebei University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2470).

References

- Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.
- Bruker (1997). SADABS (Version 2.0), SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Goswami, B. N., Kataky, J. C. S., Baruah, J. N. & Nath, S. C. (1984). J. Heterocycl. Chem. 21, 205–208.

Omar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). *Eur. J. Med. Chem.* **31**, 819–825.

Shang, Z. H. (2006). Synth. Commun. 36, 2927-2937.

- Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, 02623–02624.Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tully, W. R., Gardner, C. R., Gillespie, R. & Westwood, J. R. (1991). J. Med. Chem. 34, 2060–2067.
- Yang, R.-Y. & Dai, L.-X. (1993). J. Org. Chem. 58, 3381-3383.

Acta Cryst. (2007). E63, o3394 [doi:10.1107/S160053680703200X]

N'-(4-Methoxybenzylidene)methoxyformohydrazide

Z.-H. Shang, H.-L. Zhang and Y. Ding

Comment

Symmetrical and unsymmetrical 1,3,4-oxadiazoles have been reported to be versatile compounds with many properties (Omar *et al.*, 1996; Goswami *et al.*, 1984; Tully *et al.*, 1991; Borg *et al.*, 1999). The most common synthetic approach to 1,3,4-oxadiazoles involves oxidative cyclization from the corresponding aldehyde *N*-acylhydrazones (Yang & Dai, 1993; Shang, 2006). The title compound, (I), as the oxidative precursor, was synthesized from 4-methoxybenzaldehyde and methyl hydrazinocarboxylate in ethanol under reflux.

Both asymmetric molecules of (I) adopt a *trans* configuration with respect to the C=N bond (Fig. 1) as discribed previously (Shang *et al.*, 2007). The crystal structure is stabilized mainly through intermolecular N—H··· O hydrogen bonds (Table 1).

Experimental

A mixture of 4-methoxybenzaldehyde (1.36 g, 10 mmol) and methyl hydrazinocarboxylate (0.90 g, 10 mmol) was refluxed in ethanol (30 ml) and monitored by thin-layer chromatography. After the reaction was complete, the resulting solid was filtered off and washed with a little cool methanol. 50 mg of (I) was dissolved in 20 ml e thanol and the solution was kept at room temperature for 10 d; natural evaporation gave colourless prisms of (I) suitable for X-ray analysis.

Refinement

The N-bound H atoms were located in a difference map and their positions and U_{iso} values were freely refined.

The C-bound H atoms were positioned geometrically, with C—H = 0.93–0.96Å and refined in a riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I), drawn with 50% probability ellipsoids (arbitrary spheres for the H atoms).

Fig. 2. Reaction scheme for the formation of the title compound.

N'-(4-Methoxybenzylidene)methoxyformohydrazide

Crystal data	
$C_{10}H_{12}N_2O_3$	Z = 4
$M_r = 208.22$	$F_{000} = 440$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.325 \ {\rm Mg \ m^{-3}}$
Hall symbol: -P 1	Melting point: 464-466 K
<i>a</i> = 7.3738 (16) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 9.671 (2) Å	Cell parameters from 1471 reflections
c = 14.689 (3) Å	$\theta = 2.5 - 24.6^{\circ}$
$\alpha = 89.128 \ (4)^{\circ}$	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 85.961 \ (4)^{\circ}$	T = 293 (2) K
$\gamma = 87.693 \ (4)^{\circ}$	Prism, colorless
$V = 1044.0 (4) \text{ Å}^3$	$0.30 \times 0.20 \times 0.16 \text{ mm}$

Data collection

Bruker SMART CCD diffractometer	3674 independent reflections
Radiation source: fine-focus sealed tube	2083 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -8 \rightarrow 8$
$T_{\min} = 0.971, T_{\max} = 0.984$	$k = -9 \rightarrow 11$
5411 measured reflections	$l = -12 \rightarrow 17$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.047$
$wR(F^2) = 0.144$
S = 1.00
3674 reflections
283 parameters
7 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0721P)^2 + 0.0669P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.17$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³ Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	1.0466 (3)	0.72191 (18)	-0.27347 (12)	0.0742 (6)
O2	0.4251 (3)	0.72508 (15)	0.24793 (12)	0.0739 (6)
O3	0.3898 (3)	0.92926 (15)	0.32026 (11)	0.0672 (5)
O4	0.1151 (3)	0.22590 (17)	0.70570 (12)	0.0740 (6)
05	0.6009 (2)	0.21963 (15)	0.15450 (11)	0.0613 (5)
O6	0.6331 (2)	0.42596 (15)	0.08266 (11)	0.0609 (5)
N1	0.6155 (3)	0.85722 (18)	0.10837 (13)	0.0511 (5)
N2	0.5379 (3)	0.92379 (19)	0.18515 (14)	0.0543 (5)
N3	0.4456 (3)	0.35778 (19)	0.30239 (13)	0.0538 (5)
N4	0.5092 (3)	0.42285 (19)	0.22325 (14)	0.0554 (6)
C1	1.1315 (5)	0.8106 (3)	-0.34000 (18)	0.0860 (9)
H1A	1.0423	0.8755	-0.3620	0.129*
H1B	1.1851	0.7565	-0.3899	0.129*
H1C	1.2243	0.8598	-0.3131	0.129*
C2	0.9621 (3)	0.7807 (2)	-0.19683 (17)	0.0553 (6)
C3	0.8874 (4)	0.6903 (2)	-0.13273 (18)	0.0636 (7)
H3	0.8954	0.5958	-0.1440	0.076*
C4	0.8010 (3)	0.7373 (2)	-0.05229 (17)	0.0573 (7)
H4	0.7531	0.6744	-0.0094	0.069*
C5	0.7851 (3)	0.8790 (2)	-0.03477 (16)	0.0486 (6)
C6	0.8608 (4)	0.9673 (2)	-0.10001 (17)	0.0598 (7)
H6	0.8516	1.0620	-0.0895	0.072*
C7	0.9497 (4)	0.9210 (2)	-0.18051 (17)	0.0615 (7)
H7	1.0004	0.9834	-0.2229	0.074*
C8	0.6944 (3)	0.9342 (2)	0.04870 (16)	0.0511 (6)
H8	0.6943	1.0289	0.0586	0.061*
C9	0.4497 (4)	0.8480 (2)	0.24991 (17)	0.0543 (6)
C10	0.2883 (4)	0.8629 (3)	0.39364 (19)	0.0823 (9)
H10A	0.1935	0.8119	0.3699	0.123*
H10B	0.2354	0.9315	0.4351	0.123*
H10C	0.3677	0.8008	0.4253	0.123*
C11	0.0553 (4)	0.3160 (3)	0.77846 (17)	0.0767 (8)
H11A	0.1506	0.3770	0.7898	0.115*

H11B	0.0253	0.2623	0.8325	0.115*
H11C	-0.0503	0.3696	0.7621	0.115*
C12	0.1746 (3)	0.2837 (2)	0.62447 (17)	0.0555 (6)
C13	0.1735 (4)	0.4221 (3)	0.60634 (18)	0.0778 (9)
H13	0.1303	0.4850	0.6508	0.093*
C14	0.2377 (5)	0.4679 (3)	0.52072 (19)	0.0879 (10)
H14	0.2366	0.5627	0.5090	0.105*
C15	0.3028 (3)	0.3802 (2)	0.45221 (16)	0.0545 (6)
C16	0.3010 (4)	0.2401 (3)	0.47233 (18)	0.0685 (8)
H16	0.3434	0.1766	0.4281	0.082*
C17	0.2375 (4)	0.1938 (3)	0.55668 (19)	0.0776 (9)
H17	0.2369	0.0991	0.5685	0.093*
C18	0.3728 (4)	0.4349 (2)	0.36433 (16)	0.0616 (7)
H18	0.3635	0.5298	0.3535	0.074*
C19	0.5820 (3)	0.3447 (2)	0.15391 (16)	0.0486 (6)
C20	0.7034 (4)	0.3552 (3)	0.00160 (17)	0.0682 (8)
H20A	0.8084	0.2986	0.0149	0.102*
H20B	0.7369	0.4218	-0.0451	0.102*
H20C	0.6118	0.2978	-0.0192	0.102*
H2A	0.543 (3)	1.0150 (11)	0.1909 (16)	0.073 (8)*
H4A	0.496 (3)	0.5137 (11)	0.2144 (17)	0.075 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
01	0.0931 (15)	0.0597 (11)	0.0668 (12)	0.0012 (10)	0.0165 (11)	-0.0158 (10)
O2	0.1020 (15)	0.0338 (9)	0.0830 (13)	-0.0088 (9)	0.0193 (11)	-0.0066 (9)
O3	0.0990 (15)	0.0413 (9)	0.0585 (11)	-0.0052 (9)	0.0160 (10)	-0.0047 (8)
O4	0.1010 (15)	0.0564 (11)	0.0617 (11)	-0.0050 (10)	0.0148 (10)	0.0021 (9)
O5	0.0861 (13)	0.0310 (9)	0.0655 (11)	0.0002 (8)	0.0045 (9)	-0.0051 (7)
O6	0.0915 (14)	0.0356 (9)	0.0533 (10)	-0.0021 (8)	0.0115 (9)	-0.0037 (8)
N1	0.0595 (13)	0.0370 (10)	0.0559 (12)	0.0019 (9)	0.0018 (10)	-0.0079 (10)
N2	0.0738 (15)	0.0313 (10)	0.0558 (13)	-0.0009 (10)	0.0090 (11)	-0.0035 (10)
N3	0.0657 (14)	0.0406 (10)	0.0544 (12)	-0.0047 (10)	0.0022 (11)	-0.0034 (10)
N4	0.0786 (16)	0.0330 (11)	0.0526 (12)	-0.0011 (10)	0.0099 (11)	-0.0041 (10)
C1	0.119 (3)	0.077 (2)	0.0587 (17)	0.0095 (18)	0.0152 (18)	-0.0035 (16)
C2	0.0609 (17)	0.0481 (14)	0.0563 (15)	0.0027 (12)	-0.0006 (13)	-0.0108 (12)
C3	0.0767 (19)	0.0371 (13)	0.0752 (18)	-0.0018 (12)	0.0103 (15)	-0.0145 (13)
C4	0.0639 (17)	0.0406 (13)	0.0663 (17)	-0.0026 (12)	0.0065 (13)	-0.0069 (12)
C5	0.0526 (15)	0.0370 (12)	0.0564 (15)	-0.0008 (10)	-0.0041 (12)	-0.0089 (11)
C6	0.0780 (19)	0.0373 (12)	0.0627 (16)	0.0030 (12)	0.0044 (14)	-0.0096 (12)
C7	0.079 (2)	0.0458 (14)	0.0581 (16)	-0.0003 (13)	0.0046 (14)	-0.0001 (12)
C8	0.0645 (17)	0.0321 (11)	0.0563 (15)	-0.0022 (11)	0.0001 (13)	-0.0065 (11)
С9	0.0671 (18)	0.0345 (13)	0.0608 (16)	0.0027 (11)	-0.0032 (13)	-0.0060 (12)
C10	0.106 (2)	0.0636 (17)	0.0737 (19)	-0.0154 (16)	0.0278 (17)	-0.0073 (15)
C11	0.096 (2)	0.0724 (18)	0.0594 (17)	-0.0045 (16)	0.0120 (16)	-0.0027 (15)
C12	0.0641 (17)	0.0472 (14)	0.0548 (15)	-0.0070 (12)	0.0001 (13)	0.0012 (12)
C13	0.122 (3)	0.0487 (16)	0.0600 (17)	-0.0051 (16)	0.0165 (17)	-0.0069 (13)

C14	0.149 (3)	0.0395 (15)	0.0697 (19)	0.0006 (16)	0.028 (2)	0.0000 (14)
C15	0.0658 (18)	0.0406 (13)	0.0562 (15)	-0.0022 (11)	0.0026 (13)	-0.0030 (11)
C16	0.092 (2)	0.0434 (14)	0.0676 (18)	-0.0036 (13)	0.0160 (16)	-0.0083 (13)
C17	0.112 (3)	0.0397 (14)	0.077 (2)	-0.0070 (14)	0.0239 (18)	-0.0012 (14)
C18	0.090 (2)	0.0355 (13)	0.0578 (16)	0.0018 (13)	0.0055 (15)	-0.0027 (12)
C19	0.0584 (17)	0.0338 (12)	0.0539 (15)	-0.0036 (11)	-0.0030 (12)	-0.0043 (11)
C20	0.093 (2)	0.0529 (15)	0.0558 (16)	0.0003 (14)	0.0123 (15)	-0.0101 (13)
					()	()
Geometric paran	neters (Å, °)					
O1—C2		1.368 (3)	C5—	C6	1.37	7 (3)
01—C1		1.419 (3)	C5—	C8	1.45	3 (3)
O2—C9		1.211 (3)	C6—	С7	1.38	3 (3)
О3—С9		1.347 (3)	C6—	H6	0.93	00
O3—C10		1.427 (3)	C7—	H7	0.93	00
O4—C12		1.361 (3)	C8—	H8	0.93	00
O4—C11		1.424 (3)	C10–	-H10A	0.96	00
O5—C19		1.212 (2)	C10-	-H10B	0.96	00
O6—C19		1.341 (3)	C10–	-H10C	0.96	00
O6—C20		1.437 (3)	C11–	-H11A	0.96	00
N1—C8		1.266 (3)	C11–	-H11B	0.96	00
N1—N2		1.384 (3)	C11–	-H11C	0.96	00
N2—C9		1.340 (3)	C12-	-C13	1.36	1 (3)
N2—H2A		0.889 (10)	C12-	-C17	1.37	5 (3)
N3—C18		1.262 (3)	C13–	-C14	1.38	5 (4)
N3—N4		1.375 (3)	C13–	-H13	0.93	00
N4—C19		1.346 (3)	C14–	-C15	1.37	3 (3)
N4—H4A		0.889 (10)	C14-	-H14	0.93	00
C1—H1A		0.9600	C15-	-C16	1.38	3 (3)
C1—H1B		0.9600	C15-	-C18	1.45	6 (3)
C1—H1C		0.9600	C16–	-C17	1.36	8 (3)
C2—C3		1.376 (3)	C16–	-H16	0.93	00
C2—C7		1.380 (3)	C17–	-H17	0.93	00
C3—C4		1.376 (3)	C18–	-H18	0.93	00
С3—Н3		0.9300	C20–	-H20A	0.96	00
C4—C5		1.397 (3)	C20–	-H20B	0.96	00
C4—H4		0.9300	C20–	-H20C	0.96	00
C2C1		118.0 (2)	03—	C10—H10A	109.	5
C9—O3—C10		116.03 (19)	O3—	C10—H10B	109.	5
C12—O4—C11		118.09 (19)	H10A	—С10—Н10В	109.	5
C19—O6—C20		115.72 (17)	O3—	C10—H10C	109.	5
C8—N1—N2		115.66 (18)	H10A	—С10—Н10С	109.	5
C9—N2—N1		118.34 (19)	H10B	—С10—Н10С	109.	5
C9—N2—H2A		120.4 (17)	04—	C11—H11A	109.	5
N1—N2—H2A		121.3 (17)	04—	C11—H11B	109.	5
C18—N3—N4		116.34 (19)	H11A	—C11—H11B	109.	5
C19—N4—N3		118.58 (19)	04—	C11—H11C	109.	5
C19—N4—H4A		118.6 (17)	H11A	—С11—Н11С	109.	5
N3—N4—H4A		122.7 (17)	H11B	—С11—Н11С	109.	5

O1—C1—H1A	109.5	C13—C12—O4	124.6 (2)
O1—C1—H1B	109.5	C13—C12—C17	118.8 (2)
H1A—C1—H1B	109.5	O4—C12—C17	116.6 (2)
01—C1—H1C	109.5	C12—C13—C14	119.0 (3)
H1A—C1—H1C	109.5	С12—С13—Н13	120.5
H1B—C1—H1C	109.5	C14—C13—H13	120.5
O1—C2—C3	116.0 (2)	C15—C14—C13	123.3 (2)
O1—C2—C7	124.5 (2)	C15—C14—H14	118.4
C3—C2—C7	119.5 (2)	C13—C14—H14	118.4
C2—C3—C4	121.2 (2)	C14—C15—C16	116.5 (2)
С2—С3—Н3	119.4	C14—C15—C18	120.7 (2)
С4—С3—Н3	119.4	C16—C15—C18	122.8 (2)
C3—C4—C5	120.2 (2)	C17—C16—C15	120.7 (2)
C3—C4—H4	119.9	С17—С16—Н16	119.7
С5—С4—Н4	119.9	С15—С16—Н16	119.7
C6—C5—C4	117.4 (2)	C16—C17—C12	121.8 (2)
C6—C5—C8	120.0 (2)	С16—С17—Н17	119.1
C4—C5—C8	122.5 (2)	C12—C17—H17	119.1
C5—C6—C7	122.7 (2)	N3—C18—C15	122.2 (2)
С5—С6—Н6	118.6	N3—C18—H18	118.9
С7—С6—Н6	118.6	C15—C18—H18	118.9
C2—C7—C6	118.8 (2)	O5—C19—O6	124.1 (2)
С2—С7—Н7	120.6	O5—C19—N4	126.0 (2)
С6—С7—Н7	120.6	O6-C19-N4	109.86 (19)
N1—C8—C5	122.0 (2)	O6—C20—H20A	109.5
N1—C8—H8	119.0	O6—C20—H20B	109.5
С5—С8—Н8	119.0	H20A-C20-H20B	109.5
O2—C9—N2	126.7 (2)	O6—C20—H20C	109.5
02—C9—O3	123.5 (2)	H20A—C20—H20C	109.5
N2—C9—O3	109.78 (19)	H20B—C20—H20C	109.5
C8—N1—N2—C9	178.8 (2)	C10—O3—C9—N2	178.3 (2)
C18—N3—N4—C19	-177.6 (2)	C11—O4—C12—C13	-3.1 (4)
C1—O1—C2—C3	-177.7 (2)	C11—O4—C12—C17	177.7 (2)
C1—O1—C2—C7	1.6 (4)	O4—C12—C13—C14	-179.9 (3)
O1—C2—C3—C4	179.1 (2)	C17—C12—C13—C14	-0.7 (4)
C7—C2—C3—C4	-0.3 (4)	C12—C13—C14—C15	0.1 (5)
C2—C3—C4—C5	1.0 (4)	C13—C14—C15—C16	0.4 (5)
C3—C4—C5—C6	-0.9 (4)	C13-C14-C15-C18	-178.4 (3)
C3—C4—C5—C8	179.6 (2)	C14—C15—C16—C17	-0.2 (4)
C4—C5—C6—C7	0.1 (4)	C18—C15—C16—C17	178.6 (3)
C8—C5—C6—C7	179.6 (2)	C15—C16—C17—C12	-0.4 (5)
O1—C2—C7—C6	-179.9 (2)	C13—C12—C17—C16	0.9 (5)
C3—C2—C7—C6	-0.5 (4)	O4—C12—C17—C16	-179.8 (2)
C5—C6—C7—C2	0.6 (4)	N4—N3—C18—C15	-178.8 (2)
N2—N1—C8—C5	178.8 (2)	C14—C15—C18—N3	174.7 (3)
C6—C5—C8—N1	176.5 (2)	C16-C15-C18-N3	-4.0 (4)
C4—C5—C8—N1	-4.0 (4)	C20—O6—C19—O5	4.0 (3)
N1—N2—C9—O2	-2.2 (4)	C20—O6—C19—N4	-176.4 (2)
N1—N2—C9—O3	177.75 (19)	N3—N4—C19—O5	-1.4 (4)

С10—О3—С9—О2	-1.8 (4)	N3—N4—C19—O6		178.99 (19)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2A···O5 ⁱ	0.889 (10)) 2.096 (13)	2.940 (2)	158 (2)
N4—H4A…O2	0.889 (10)) 2.145 (14)	2.986 (2)	157 (2)
Symmetry codes: (i) x , y +1, z .				

